Neurobiology of Disease Intrastriatal Transforming Growth Factor Delivery to a Model of Parkinson’s Disease Induces Proliferation and Migration of Endogenous Adult Neural Progenitor Cells without Differentiation into Dopaminergic Neurons
نویسندگان
چکیده
We examined the cell proliferative, neurogenic, and behavioral effects of transforming growth factor (TGF ) in a 6-OHDA Parkinson’s disease model when compared with naive rats. Intrastriatal TGF infusion induced significant proliferation, hyperplastic nodules, and substantial migratory waves of nestin-positive progenitor cells from the adult subventricular zone (SVZ) of dopamine-denervated rats. Interestingly, SVZ cells in naive rats displayed proliferation but minimal migration in response to the TGF infusion. The cells in the expanded SVZ accumulated cytoplasmic -catenin, indicating activation of classical Wnt signaling. However, no evidence of any neuronal differentiation was found of these recruited progenitor cells anywhere examined in the brain. Consequently, no evidence of dopaminergic (DA) neurogenesis was found in the striatum or substantia nigra in any experimental group, and amphetamine-induced behavioral rotations did not improve. In summary, the cells in the TGF -induced migratory cellular wave remain undifferentiated and do not differentiate into midbrain-like DA neurons.
منابع مشابه
Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملMesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease
Objective(s): The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 ...
متن کاملIrisin protect the Dopaminergic neurons of the Substantia nigra in the rat model of Parkinson’s disease
Objective(s): Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer’s (AD) and Parkinson’s disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mic...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملNeuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ
Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...
متن کامل